Spontaneous emission of light from atoms: the model
نویسنده
چکیده
PACS 03.70+k, 32.70.Cs, 42.50.Ct We investigate (non-relativistic) atomic systems interacting with quantum electromagnetic field (QEF). The resulting model describes spontaneous emission of light from a two-level atom surrounded by various initial states of the QEF. We assume that the quantum field interacts with the atom via the standard, minimalcoupling Hamiltonian, with the A term neglected. We also assume that there will appear at most single excitations (photons). By conducting the analysis on a general level we allow for an arbitrary initial state of the QEF (which can be for instance: the vacuum, the ground state in a cavity, or the squeezed state). We derive a Volterra-type equation which governs the time evolution of the amplitude of the excited state. The two-point function of the initial state of the QEF, integrated with a combination of atomic wavefunctions, forms the kernel of this equation.
منابع مشابه
Spontaneous Emission Spectrum from a Driven Three-Level Atom in a Double-Band Photonic Crystal
Abstract The spontaneous emission spectrum from a driven three-level atom placed inside a double-band photonic crystal has been investigated. We use the model which assumes the upper levels of the atomic transition are coupled via a classical driving field. The transition from one of the upper levels to lower level couples to the modes of the modified reservoir, and the transition from the oth...
متن کاملInterference of Spontaneous Emission of Light from Two Atomic Ensembles
We demonstrate interference of spontaneous emission of light from two distant solid-state atomic ensembles, when both ensembles are coherently excited by a common laser source. Owing to a strong collective enhancement of the spontaneous emission, the atoms behave as ideal two-level quantum systems and no which-path information is left in the atomic ensembles after emission of a photon. This all...
متن کاملInterference of Spontaneous Emission of Light from two Solid-State Atomic Ensembles
We report an interference experiment of spontaneous emission of light from two distant solid-state ensembles of atoms that are coherently excited by a short laser pulse. The ensembles are Erbium ions doped into two LiNbO3 crystals with channel waveguides, which are placed in the two arms of a MachZehnder interferometer. The light that is spontaneously emitted after the excitation pulse shows fi...
متن کاملInvestigating Molecular Spontaneous Emission Rate Enhancement Close to Elliptical Nanoparticles by Boundary Integral Method
Utilizing boundary integral method (BIM), we investigate molecularspontaneous emission rate enhancement in the vicinity of plasmonic nanoparticles ofelliptical cross section. These types of nanoparticles can considerably enhance themolecule decay rate. The spontaneous emission rate can be modified by altering theaspect ratio of the elliptical nanoparticle, the background refractive index andnan...
متن کاملCoherent Effects under Suppressed Spontaneous Emission
An ensemble of resonance atoms is considered, which are doped into a medium with well developed polariton effect, when in the spectrum of polariton states there is a band gap. If an atom with a resonance frequency inside the polariton gap is placed into the medium, the atomic spontaneous emission is suppressed. However, a system of resonance atoms inside the polariton gap can radiate when their...
متن کاملResonant Scattering and Spontaneous Emission in Dielectrics: Microscopic Derivation of Local-Field Effects
Resonant classical light scattering by impurity atoms inside dielectric cubic lattices is investigated in the point-dipole limit. Modifications to resonance frequencies and linewidths are shown to be different for substitutional and interstitial impurities. Spontaneous emission rates inside dielectrics exhibit the well-known empty-cavity and Lorentz local-field factors for substitutional and in...
متن کامل